PAVOL JOZEF ŠAFÁRIK UNIVERSITY IN KOŠICE Faculty of Science

INSTITUTE OF MATHEMATICS

wQN-space and ideal coverings of \boldsymbol{X}

Viera Šottová

joint work with Jaroslav Šupina

Hejnice 2018

Definition (Ideal)

The family $\mathcal{I} \subseteq \mathcal{P}(\omega)$ is called **ideal**, if it has properties: (11) $A \in \mathcal{I}, B \subseteq A \rightarrow B \in \mathcal{I}$, (12) $A, B \in \mathcal{I} \rightarrow A \cup B \in \mathcal{I}$, (13) $\omega \notin \mathcal{I}$,

(I4) $(\forall n \in \omega) \{n\} \in \mathcal{I}.$

- The Frechét ideal, denoted as Fin, is a set [ω]^{<ℵ0}.
- The Asymptotic density zero ideal: $\mathcal{Z} = \left\{ A \subseteq \omega, \lim_{n \to \infty} \frac{|A \cap n|}{n} = 0 \right\}.$
- etc.

The sequence $\langle f_n : n \in \omega \rangle$ of functions on X is called \mathcal{I} -convergent to a function f on X (written $f_n \xrightarrow{\mathcal{I}} f$), if $\{n \in \omega : |f_n(x) - f(x)| \ge \varepsilon\} \in \mathcal{I}$ for each $x \in X$ and for each $\varepsilon > 0$.

The sequence $\langle f_n: n \in \omega \rangle$ of functions on X is called \mathcal{I} -convergent to a function f on X (written $f_n \xrightarrow{\mathcal{I}} f$), if $\{n \in \omega : |f_n(x) - f(x)| \ge \varepsilon\} \in \mathcal{I}$ for each $x \in X$ and for each $\varepsilon > 0$.

Definition (\mathcal{I} -quasi-normal convergence)

The sequence $\langle f_n: n \in \omega \rangle$ is called \mathcal{I} -quasi-normal convergent to f on X if there exists a sequence of positive reals $\langle \varepsilon_n: n \in \omega \rangle$ and $\varepsilon_n \xrightarrow{\mathcal{I}} 0$ such that $\{n \in \omega: |f_n(x) - f(x)| \ge \varepsilon_n\} \in \mathcal{I}$ for any $x \in X$, denoted $f_n \xrightarrow{\mathcal{I} QN} 0$.

The sequence $\langle f_n : n \in \omega \rangle$ of functions on X is called \mathcal{I} -convergent to a function f on X (written $f_n \xrightarrow{\mathcal{I}} f$), if $\{n \in \omega : |f_n(x) - f(x)| \ge \varepsilon\} \in \mathcal{I}$ for each $x \in X$ and for each $\varepsilon > 0$.

Definition (\mathcal{I} -quasi-normal convergence)

The sequence $\langle f_n : n \in \omega \rangle$ is called \mathcal{I} -quasi-normal convergent to f on X if there exists a sequence of positive reals $\langle \varepsilon_n : n \in \omega \rangle$ and $\varepsilon_n \xrightarrow{\mathcal{I}} 0$ such that $\{n \in \omega : |f_n(x) - f(x)| \ge \varepsilon_n\} \in \mathcal{I}$ for any $x \in X$, denoted $f_n \xrightarrow{\mathcal{I}_{QN}} 0$.

- $\langle arepsilon_n: n \in \omega
 angle$ is called control sequence
- especially, if control sequence is $\langle 2^{-n} : n \in \omega \rangle$ we are talking about strongly \mathcal{I} -quasi normal convergence of f_n to f, written $f_n \xrightarrow{s\mathcal{I}QN} f$.

The sequence $\langle f_n : n \in \omega \rangle$ of functions on X is called \mathcal{I} -convergent to a function f on X (written $f_n \xrightarrow{\mathcal{I}} f$), if $\{n \in \omega : |f_n(x) - f(x)| \ge \varepsilon\} \in \mathcal{I}$ for each $x \in X$ and for each $\varepsilon > 0$.

Definition (\mathcal{I} -quasi-normal convergence)

The sequence $\langle f_n: n \in \omega \rangle$ is called \mathcal{I} -quasi-normal convergent to f on X if there exists a sequence of positive reals $\langle \varepsilon_n: n \in \omega \rangle$ and $\varepsilon_n \xrightarrow{\mathcal{I}} 0$ such that $\{n \in \omega: |f_n(x) - f(x)| \ge \varepsilon_n\} \in \mathcal{I}$ for any $x \in X$, denoted $f_n \xrightarrow{\mathcal{I} QN} 0$.

- $\langle arepsilon_n: n \in \omega
 angle$ is called control sequence
- especially, if control sequence is $\langle 2^{-n} : n \in \omega \rangle$ we are talking about strongly \mathcal{I} -quasi normal convergence of f_n to f, written $f_n \xrightarrow{s\mathcal{I}QN} f$.

classical convergence $\Rightarrow \mathcal{I}$ -convergence

 $\mathrm{QN}\text{-}\mathsf{convergence} \Rightarrow \mathsf{sIQN}\text{-}\mathsf{convergence} \Rightarrow \mathsf{IQN}\text{-}\mathsf{convergence}$

Let us consider a family \mathcal{E} of functions on X.

 ${\mathcal E}$ is closed under taking uniformly convergent series of functions from ${\mathcal E}$

and if $f \in \mathcal{E}, c_1, c_2 > 0$ then $\min\{c_1, |c_2f|\} \in \mathcal{E}.$

(1)

Let us consider a family \mathcal{E} of functions on X.

 \mathcal{E} is closed under taking uniformly convergent series of functions from \mathcal{E} and (1) if $f \in \mathcal{E}, c_1, c_2 > 0$ then $\min\{c_1, |c_2f|\} \in \mathcal{E}.$

- family of all continuous, Borel or non-negative upper semicontinuous functions $(USC_p^+(X))$ and etc.

Let us consider a family \mathcal{E} of functions on X.

 ${\mathcal E}$ is closed under taking uniformly convergent series of functions from ${\mathcal E}$

```
and (1)
if f \in \mathcal{E}, c_1, c_2 > 0 then \min\{c_1, |c_2f|\} \in \mathcal{E}.
```

• family of all continuous, Borel or non-negative upper semicontinuous functions $(USC_p^+(X))$ and etc.

Definition ($(\mathcal{I}, \mathcal{J})$ wQN-space)

A topological space X is an $(\mathcal{I}, \mathcal{J})$ wQN-**space** if for any sequence $\langle f_n : n \in \omega \rangle$ of continuous real functions \mathcal{I} -converging to 0 on X, there exists a sequence $\langle m_n : n \in \omega \rangle$ such that $f_{m_n} \xrightarrow{\mathcal{J}QN} 0$.

Let us consider a family \mathcal{E} of functions on X.

 ${\mathcal E}$ is closed under taking uniformly convergent series of functions from ${\mathcal E}$

```
and (1)
if f \in \mathcal{E}, c_1, c_2 > 0 then \min\{c_1, |c_2f|\} \in \mathcal{E}.
```

• family of all continuous, Borel or non-negative upper semicontinuous functions $(\mathrm{USC}_p^+(X))$ and etc.

Definition ($(\mathcal{I}, \mathcal{J})$ wQN-space)

A topological space X is an $(\mathcal{I}, \mathcal{J})$ wQN-**space** if for any sequence $\langle f_n : n \in \omega \rangle$ of continuous real functions \mathcal{I} -converging to 0 on X, there exists a sequence $\langle m_n : n \in \omega \rangle$ such that $f_{m_n} \xrightarrow{\mathcal{J}$ QN} 0.

Definition ($(\mathcal{I}, s\mathcal{J})$ wQN(\mathcal{E})-space)

A topological space X is called an $(\mathcal{I}, \mathbf{s}\mathcal{J})$ wQN (\mathcal{E}) -space, if for any sequence $\langle f_n : n \in \omega \rangle$ of functions from \mathcal{E} converging to zero there exists a sequence $\langle m_n : n \in \omega \rangle$ such that $f_{m_n} \xrightarrow{\mathbf{s}\mathcal{J}$ QN} 0 with control sequence $\langle 2^{-n} : n \in \omega \rangle$.

Let \mathcal{I}, \mathcal{J} be ideals on ω .

 $\mathrm{wQN}\text{-}\mathsf{space} \Rightarrow (\mathcal{I},\mathsf{s}\mathcal{J})\mathrm{wQN}\text{-}\mathsf{space} \Rightarrow (\mathcal{I},\mathcal{J})\mathrm{wQN}\text{-}\mathsf{space}$

Let \mathcal{I}, \mathcal{J} be ideals on ω .

$$\mathrm{wQN} ext{-space} \Rightarrow (\mathcal{I}, \mathsf{s}\mathcal{J}) \mathrm{wQN} ext{-space} \Rightarrow (\mathcal{I}, \mathcal{J}) \mathrm{wQN} ext{-space}$$

Lemma (V.Š., J.Šupina)

Let $\langle \varepsilon_n : n \in \omega \rangle$, $\langle \delta_n : n \in \omega \rangle$ be sequences of positive reals in [0,1] such that $\varepsilon_n \to 0$, $\langle \langle f_{n,m} : m \in \omega \rangle : n \in \omega \rangle$ being a sequence of sequences of functions on X. Then there is a sequence $\langle g_m : m \in \omega \rangle$ of functions with values in [0,1] such that the following holds.

(1) If $f_{n,m} \in \mathcal{E}$ for all $n \in \omega$ then $g_m \in \mathcal{E}$, assuming \mathcal{E} satisfies (1).

(2) If
$$f_{n,m} \xrightarrow{\mathcal{I}} 0$$
 for each $n \in \omega$ then $g_m \xrightarrow{\mathcal{I}} 0$.

- (3) If $\langle f_{n,m}: m \in \omega \rangle$ are monotone sequences for each $n \in \omega$ then $\langle g_m: m \in \omega \rangle$ is a monotone sequence.
- (4) There is a sequence $\langle k_n : n \in \omega \rangle$ (e.g., $k_n = \max\{i, 2^{-i} \ge \varepsilon_n\}$) such that for any $x \in X$ and $m \in \omega$ we have

$$g_m(x) < \varepsilon_n \rightarrow |f_{k_n,m}(x)| < \frac{\delta_n}{2^{k_n}}.$$
 (2)

Theorem (V.Š., J.Šupina)

Let X be a topological space. Let \mathcal{E} be a family of functions satisfying (1). Then the following are equivalent.

- (a) X is an $(\mathcal{I}, s\mathcal{J})$ wQN (\mathcal{E}) -space.
- (b) There is a sequence (ε_n : n ∈ ω) of positive reals such that ε_n → 0 and for any sequence (f_n : n ∈ ω) of functions from ε converging to zero there exists a sequence (m_n : n ∈ ω) such that f_{m_n} ^{JQN} 0 with control sequence (ε_n : n ∈ ω).
- (c) For every sequence $\langle \varepsilon_n : n \in \omega \rangle$ of positive reals such that $\varepsilon_n \to 0$ and for any sequence $\langle f_n : n \in \omega \rangle$ of functions from \mathcal{E} converging to zero there exists a sequence $\langle m_n : n \in \omega \rangle$ such that $f_{m_n} \xrightarrow{\mathcal{J}QN} 0$ with control sequence $\langle \varepsilon_n : n \in \omega \rangle$.

Theorem (V.Š., J.Šupina)

Let X be a topological space. Let \mathcal{E} be a family of functions satisfying (1). Then the following are equivalent.

- (a) X is an $(\mathcal{I}, s\mathcal{J})$ wQN (\mathcal{E}) -space.
- (b) There is a sequence $\langle \varepsilon_n : n \in \omega \rangle$ of positive reals such that $\varepsilon_n \to 0$ and for any sequence $\langle f_n : n \in \omega \rangle$ of functions from \mathcal{E} converging to zero there exists a sequence $\langle m_n : n \in \omega \rangle$ such that $f_{m_n} \xrightarrow{\mathcal{J}QN} 0$ with control sequence $\langle \varepsilon_n : n \in \omega \rangle$.
- (c) For every sequence (ε_n : n ∈ ω) of positive reals such that ε_n → 0 and for any sequence (f_n : n ∈ ω) of functions from *E* converging to zero there exists a sequence (m_n : n ∈ ω) such that f_{m_n} *JQN*/*QN* 0 with control sequence (ε_n : n ∈ ω).
 - For control sequence it is enough to ask only convergence to zero.
 - Similarly for an sJwmQN-space, i.e. for (Fin, sJ)wQN(C_p(X))-space we consider only monotone sequences.

• Ω denotes all ω -covers, Γ denotes all γ -covers and $\mathcal O$ denotes all open covers of X.

- Ω denotes all ω -covers, Γ denotes all γ -covers and O denotes all open covers of X.
- Let \mathcal{I} be an ideal on ω .
- A sequence $\langle U_n: n \in \omega \rangle$ of subsets of X is called an \mathcal{I} - γ -cover, if for every $n, U_n \neq X$ and the set $\{n \in \omega; x \notin U_n\} \in \mathcal{I}$ for every $x \in X$, [3].
- \mathcal{I} - Γ denotes all \mathcal{I} - γ -covers of X.

- Ω denotes all ω -covers, Γ denotes all γ -covers and O denotes all open covers of X.
- Let \mathcal{I} be an ideal on ω .
- A sequence $\langle U_n: n \in \omega \rangle$ of subsets of X is called an \mathcal{I} - γ -cover, if for every $n, U_n \neq X$ and the set $\{n \in \omega; x \notin U_n\} \in \mathcal{I}$ for every $x \in X$, [3].
- \mathcal{I} - Γ denotes all \mathcal{I} - γ -covers of X.
- Let \mathcal{A} and \mathcal{B} be families of sets.
- S₁(A, B): for a sequence (U_n: n ∈ ω) of elements of A we can select a set U_n ∈ U_n for each n ∈ ω such that (U_n: n ∈ ω) is a sequence of B

Ideal coverings

- Ω denotes all ω -covers, Γ denotes all γ -covers and \mathcal{O} denotes all open covers of X.
- Let \mathcal{I} be an ideal on ω .
- A sequence $\langle U_n : n \in \omega \rangle$ of subsets of X is called an \mathcal{I} - γ -cover, if for every $n, U_n \neq X$ and the set $\{n \in \omega; x \notin U_n\} \in \mathcal{I}$ for every $x \in X$, [3].
- \mathcal{I} - Γ denotes all \mathcal{I} - γ -covers of X.
- Let ${\mathcal A}$ and ${\mathcal B}$ be families of sets.
- S₁(A, B): for a sequence (U_n: n ∈ ω) of elements of A we can select a set U_n ∈ U_n for each n ∈ ω such that (U_n: n ∈ ω) is a sequence of B

For topological space \boldsymbol{X}

- Ω denotes all ω -covers, Γ denotes all γ -covers and $\mathcal O$ denotes all open covers of X.
- Let \mathcal{I} be an ideal on ω .
- A sequence $\langle U_n: n \in \omega \rangle$ of subsets of X is called an \mathcal{I} - γ -cover, if for every $n, U_n \neq X$ and the set $\{n \in \omega; x \notin U_n\} \in \mathcal{I}$ for every $x \in X$, [3].
- \mathcal{I} - Γ denotes all \mathcal{I} - γ -covers of X.
- Let \mathcal{A} and \mathcal{B} be families of sets.
- $S_1(\mathcal{A}, \mathcal{B})$: for a sequence $\langle \mathcal{U}_n : n \in \omega \rangle$ of elements of \mathcal{A} we can select a set $U_n \in \mathcal{U}_n$ for each $n \in \omega$ such that $\langle U_n : n \in \omega \rangle$ is a sequence of \mathcal{B}

Lemma (J.Šupina)

For any countable ω -cover \mathcal{U} and its bijective enumeration $\langle U_n: n \in \omega \rangle$ there is an ideal \mathcal{I} such that $\langle U_n: n \in \omega \rangle$ is an \mathcal{I} - γ -cover.

• Similarly to M. Scheepers [7] we define

 $\mathcal{I}\text{-}\Gamma_x(X) = \{A \in [X \setminus \{x\}]^{\omega}; A \text{ is } \mathcal{I}\text{-convergent to } x\}.$

Similarly to M. Scheepers [7] we define

 $\mathcal{I}\text{-}\Gamma_x(X) = \{A \in [X \setminus \{x\}]^{\omega}; A \text{ is } \mathcal{I}\text{-convergent to } x\}.$

- Consider the $C_p(X)$ a set of continuous functions from X to \mathbb{R} endowed with the Tychonoff product topology.
- **0** denotes the function on X which is equal to zero everywhere.
- \mathcal{I} - $\Gamma_0(C_p(X)) = \mathcal{I}$ - Γ_0 .

Similarly to M. Scheepers [7] we define

 $\mathcal{I}\text{-}\Gamma_x(X) = \{A \in [X \setminus \{x\}]^{\omega}; A \text{ is } \mathcal{I}\text{-convergent to } x\}.$

- Consider the $C_p(X)$ a set of continuous functions from X to \mathbb{R} endowed with the Tychonoff product topology.
- **0** denotes the function on X which is equal to zero everywhere.
- \mathcal{I} - $\Gamma_0(C_p(X)) = \mathcal{I}$ - Γ_0 .

Definition

The $C_p(X)$ has the property $S_1(\mathcal{I}-\Gamma_0, \mathcal{J}-\Gamma_0)$ if:

for any sequence $\langle\langle f_{n,m}: m \in \omega \rangle : n \in \omega \rangle$ of sequences of continuous real functions such that $f_{n,m} \xrightarrow{\mathcal{I}} 0$ for each n, there exists a sequence $\langle m_n : n \in \omega \rangle$ such that $f_{n,m_n} \xrightarrow{\mathcal{J}} 0$.

The $C_p(X)$ has the property $S_1(\mathcal{I}-\Gamma_0, \mathcal{J}-\Gamma_0)$ if:

for any sequence $\langle \langle f_{n,m}: m \in \omega \rangle : n \in \omega \rangle$ of sequences of continuous real functions such that $f_{n,m} \xrightarrow{\mathcal{I}} 0$ for each n, there exists a sequence $\langle m_n: n \in \omega \rangle$ such that $f_{n,m_n} \xrightarrow{\mathcal{I}} 0$.

We say that a topological space X has \mathcal{J} -Hurewicz property if for each sequence $\langle \mathcal{U}_n: n \in \omega \rangle$ of open covers of X there are finite $\mathcal{V}_n \subset \mathcal{U}_n$, $n \in \omega$ such that for each $x \in X$, $\{n \in \omega, x \notin \bigcup \mathcal{V}_n\} \in \mathcal{J}$.

We say that a topological space X has \mathcal{J} -Hurewicz property if for each sequence $\langle \mathcal{U}_n: n \in \omega \rangle$ of open covers of X there are finite $\mathcal{V}_n \subset \mathcal{U}_n$, $n \in \omega$ such that for each $x \in X$, $\{n \in \omega, x \notin \bigcup \mathcal{V}_n\} \in \mathcal{J}$.

- \mathcal{J} -Hurewicz property was introduced by P. Das [3].
- P. Szewczak and B. Tsaban [9] (they consider an S-Menger property) showed that

 $\mathsf{Hurewicz} \longrightarrow \mathcal{J}\text{-}\mathsf{Hurewicz} \longrightarrow \mathsf{Menger}$

We say that a topological space X has \mathcal{J} -Hurewicz property if for each sequence $\langle \mathcal{U}_n : n \in \omega \rangle$ of open covers of X there are finite $\mathcal{V}_n \subset \mathcal{U}_n$, $n \in \omega$ such that for each $x \in X$, $\{n \in \omega, x \notin \bigcup \mathcal{V}_n\} \in \mathcal{J}$.

- *J*-Hurewicz property was introduced by P. Das [3].
- P. Szewczak and B. Tsaban [9] (they consider an S-Menger property) showed that

 $\mathsf{Hurewicz} \longrightarrow \mathcal{J}\text{-}\mathsf{Hurewicz} \longrightarrow \mathsf{Menger}$

Theorem (Bukovský–Das–Šupina)

If X is a normal topological space then the following are equivalent. Moreover, the equivalence $(a) \equiv (b)$ holds for arbitrary topological space X.

- (a) X is an $(\mathcal{I}, s\mathcal{J})$ wQN-space.
- (b) $C_p(X)$ has the property $S_1(\mathcal{I}-\Gamma_0, \mathcal{J}-\Gamma_0)$.
- (c) X is an $S_1(\mathcal{I}-\Gamma^{sh}, \mathcal{J}-\Gamma)$ -space.

Theorem (V.Š., J.Šupina)

If X is a perfectly normal topological space then the following are equivalent. Moreover, if X is arbitrary topological space then $(a) \equiv (b)$.

- (a) X is an $s\mathcal{J}wmQN$ -space.
- (b) $C_p(X)$ has the property $S_1(\Gamma_0^m, \mathcal{J} \Gamma_0)$.
- (c) X possesses a \mathcal{J} -Hurewicz property.

Theorem (V.Š., J.Šupina)

If X is a perfectly normal topological space then the following are equivalent. Moreover, if X is arbitrary topological space then $(a) \equiv (b)$.

- (a) X is an $s\mathcal{J}wmQN$ -space.
- (b) $C_p(X)$ has the property $S_1(\Gamma_0^m, \mathcal{J} \cdot \Gamma_0)$.
- (c) X possesses a \mathcal{J} -Hurewicz property.

Theorem (V.Š., J.Šupina)

Let \mathcal{I}, \mathcal{J} be ideals on ω . Then the following statements are equivalent.

- (a) X is an $S_1(\mathcal{I}-\Gamma, \mathcal{J}-\Gamma)$ -space.
- (b) USC⁺_p(X) has the property $S_1(\mathcal{I}-\Gamma_0, \mathcal{J}-\Gamma_0)$.
- (c) X is an $(\mathcal{I}, s\mathcal{J})$ wQN(USC⁺_p(X))-space.

X is	X is	
$(\mathcal{I}, s\mathcal{J}) \mathrm{wQN}\text{-}space$	$S_1(\mathcal{I}\text{-}\Gamma,\mathcal{J}\text{-}\Gamma)$	$C_p(X)$ has $\mathrm{S}_1(\mathcal{I} extsf{-}\Gamma_{0},\mathcal{J} extsf{-}\Gamma_{0})$
$\mathrm{s}\mathcal{J}\mathrm{wm}\mathrm{QN} ext{-space}$	$\mathcal J$ -Hurewicz	$C_p(X)$ has $\mathrm{S}_1(\Gamma_{0}^m,\mathcal{J} ext{-}\Gamma_{0})$
$(\mathcal{I}, s\mathcal{J})$ wQN($USC_p(X)$)-space	$S_1(\mathcal{I}\text{-}\Gamma,\mathcal{J}\text{-}\Gamma)$	$USC_p(X)$ has $\mathrm{S}_1(\mathcal{I} extsf{-}\Gamma_{oldsymbol{0}},\mathcal{J} extsf{-}\Gamma_{oldsymbol{0}})$

Bibliography

- - Bukovský L., Das P., Šupina J.: *Ideal quasi-normal convergence and related notions*, Colloq. Math. 146 (2017), 265-281.

Bukovský L., Haleš J.: QN-*spaces*, wQN-*spaces and covering properties*, Topology Appl. **154** (2007), 848–858.

Das P., *Certain types of open covers and selection principles using ideals*, Houston J. Math. **39** (2013), 637–650.

- Fremlin D.H.: SSP and wQN, preprint, 2003.
- Chandra D.: Some remarks on sequence selection properties using ideals, Mat. Vesnik **68** (2016), 39–44.

Scheepers M.: A sequential property of $C_p(X)$ and a covering property of Hurewicz, Proc. Amer. Math. Soc. **125** (1997), 2789–2795.

Scheepers M.: Sequential convergence in $C_p(X)$ and a covering property, East-West J. Math. 1 (1999) 207-214.

PAVOL JOZEF ŠAFÁRIK UNIVERSITY IN KOŠICE Faculty of Science

Thank you for your attention

viera.sottova@student.upjs.sk